Search results for "Method of quantum characteristics"
showing 10 items of 10 documents
Quantum and Classical Statistical Mechanics of the Integrable Models in 1 + 1 Dimensions
1990
In a short but remarkable paper Yang and Yang [1] showed that the free energy of a model system consisting of N bosons on a line with repulsive δ-function interactions was given by a set of coupled integral equations. The Yangs’ chosen model is in fact the repulsive version of the quantum Nonlinear Schrodinger (NLS) model. We have shown that with appropriate extensions and different dispersion relations and phase shifts similar formulae apply to ‘all’ of the integrable models quantum or classical. These models include the sine-Gordon (s-G) and sinh-Gordon (sinh-G) models, the two NLS models (attractive and repulsive), the Landau-Lifshitz (L-L’) model which includes all four previous models,…
Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations
1985
We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)
The Dynamical Problem for a Non Self-adjoint Hamiltonian
2012
After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrodinger and Heisenberg representations.
Solitons ofq-deformed quantum lattices and the quantum soliton
2001
We use the classical N-soliton solution of a q-deformed lattice, the Maxwell-Bloch (MB) lattice, which we reported recently (Rybin A V, Varzugin G G, Timonen J and Bullough R K Year 2001 J. Phys. A: Math. Gen. 34 157) in order, ultimately, to fully comprehend the `quantum soliton'. This object may be the source of a new information technology (Abram I 1999 Quantum solitons Phys. World 21-4). We suggested in Rybin et al 2001 that a natural quantum mechanical matrix element of the q-deformed quantum MB lattice becomes in a suitable limit the classical 1-soliton solution of the classical q-deformed MB lattice explicitly derived by a variant of the Darboux-Backlund method. The classical q-defor…
Why a Quantum Tool in Classical Contexts?
2012
Soliton Statistical Mechanics: Statistical Mechanics of the Quantum and Classical Integrable Models
1988
It is shown how the Bethe Ansatz (BA) analysis for the quantum statistical mechanics of the Nonlinear Schrodinger Model generalises to the other quantum integrable models and to the classical statistical mechanics of the classical integrable models. The bose-fermi equivalence of these models plays a fundamental role even at classical level. Two methods for calculating the quantum or classical free energies are developed: one generalises the BA method the other uses functional integral methods. The familiar classical action-angle variables of the integrable models developed for the real line R are used throughout, but the crucial importance of periodic boundary conditions is recognized and t…
The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics
2020
We know that in Hamiltonian systems a dynamic function f(q, p) develops in time according to
Solution of the Lindblad equation in Kraus representation
2006
The so-called Lindblad equation, a typical master equation describing the dissipative quantum dynamics, is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form, known as the Kraus representation. Following a few simple examples, the general applicability of the method is clarified.
A Noncommutative Approach to Ordinary Differential Equations
2005
We adapt ideas coming from Quantum Mechanics to develop a non-commutative strategy for the analysis of some systems of ordinary differential equations. We show that the solution of such a system can be described by an unbounded, self-adjoint and densely defined operator H which we call, in analogy with Quantum Mechanics, the Hamiltonian of the system. We discuss the role of H in the analysis of the integrals of motion of the system. Finally, we apply this approach to several examples.
The relaxation-time limit in the quantum hydrodynamic equations for semiconductors
2006
Abstract The relaxation-time limit from the quantum hydrodynamic model to the quantum drift–diffusion equations in R 3 is shown for solutions which are small perturbations of the steady state. The quantum hydrodynamic equations consist of the isentropic Euler equations for the particle density and current density including the quantum Bohm potential and a momentum relaxation term. The momentum equation is highly nonlinear and contains a dispersive term with third-order derivatives. The equations are self-consistently coupled to the Poisson equation for the electrostatic potential. The relaxation-time limit is performed both in the stationary and the transient model. The main assumptions are…