Search results for "Method of quantum characteristics"

showing 10 items of 10 documents

Quantum and Classical Statistical Mechanics of the Integrable Models in 1 + 1 Dimensions

1990

In a short but remarkable paper Yang and Yang [1] showed that the free energy of a model system consisting of N bosons on a line with repulsive δ-function interactions was given by a set of coupled integral equations. The Yangs’ chosen model is in fact the repulsive version of the quantum Nonlinear Schrodinger (NLS) model. We have shown that with appropriate extensions and different dispersion relations and phase shifts similar formulae apply to ‘all’ of the integrable models quantum or classical. These models include the sine-Gordon (s-G) and sinh-Gordon (sinh-G) models, the two NLS models (attractive and repulsive), the Landau-Lifshitz (L-L’) model which includes all four previous models,…

Nonlinear Sciences::Exactly Solvable and Integrable SystemsMethod of quantum characteristicsStatistical mechanicsQuantum inverse scattering methodToda latticeQuantum statistical mechanicsClassical limitQuantum chaosMathematical physicsMathematicsBethe ansatz
researchProduct

Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations

1985

We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)

Coupling constantPhysicsPartition function (statistical mechanics)Schrödinger equationsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicssymbolsRelativistic wave equationsMethod of quantum characteristicsHigh Energy Physics::ExperimentSupersymmetric quantum mechanicsQuantum statistical mechanicsFractional quantum mechanicsMathematical physics
researchProduct

The Dynamical Problem for a Non Self-adjoint Hamiltonian

2012

After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrodinger and Heisenberg representations.

AlgebraQuantum probabilityTheoretical physicsQuantization (physics)symbols.namesakeQuantum dynamicsQuantum operationsymbolsMethod of quantum characteristicsSupersymmetric quantum mechanicsQuantum statistical mechanicsSchrödinger's catMathematics
researchProduct

Solitons ofq-deformed quantum lattices and the quantum soliton

2001

We use the classical N-soliton solution of a q-deformed lattice, the Maxwell-Bloch (MB) lattice, which we reported recently (Rybin A V, Varzugin G G, Timonen J and Bullough R K Year 2001 J. Phys. A: Math. Gen. 34 157) in order, ultimately, to fully comprehend the `quantum soliton'. This object may be the source of a new information technology (Abram I 1999 Quantum solitons Phys. World 21-4). We suggested in Rybin et al 2001 that a natural quantum mechanical matrix element of the q-deformed quantum MB lattice becomes in a suitable limit the classical 1-soliton solution of the classical q-deformed MB lattice explicitly derived by a variant of the Darboux-Backlund method. The classical q-defor…

PhysicsQuantum dynamicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsQuantum channelQuantum chaosNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum processQuantum mechanicsQuantum operationMethod of quantum characteristicsQuantum algorithmQuantum dissipationMathematical PhysicsJournal of Physics A: Mathematical and General
researchProduct

Why a Quantum Tool in Classical Contexts?

2012

Theoretical physicsQuantum discordQuantum probabilityQuantum dynamicsQuantum mechanicsQuantum processQuantum operationMethod of quantum characteristicsQuantum algorithmQuantum channelMathematicsQuantum Dynamics for Classical Systems
researchProduct

Soliton Statistical Mechanics: Statistical Mechanics of the Quantum and Classical Integrable Models

1988

It is shown how the Bethe Ansatz (BA) analysis for the quantum statistical mechanics of the Nonlinear Schrodinger Model generalises to the other quantum integrable models and to the classical statistical mechanics of the classical integrable models. The bose-fermi equivalence of these models plays a fundamental role even at classical level. Two methods for calculating the quantum or classical free energies are developed: one generalises the BA method the other uses functional integral methods. The familiar classical action-angle variables of the integrable models developed for the real line R are used throughout, but the crucial importance of periodic boundary conditions is recognized and t…

Quantization (physics)Quantum dynamicsQuantum processMethod of quantum characteristicsQuantum inverse scattering methodQuantum statistical mechanicsQuantum dissipationQuantum chaosMathematical physicsMathematics
researchProduct

The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics

2020

We know that in Hamiltonian systems a dynamic function f(q, p) develops in time according to

PhysicsOpen quantum systemCanonical quantizationQuantum mechanicsQuantum dynamicsQuantum electrodynamicsMethod of quantum characteristicsSupersymmetric quantum mechanicsGauge theoryQuantum dissipationQuantum statistical mechanics
researchProduct

Solution of the Lindblad equation in Kraus representation

2006

The so-called Lindblad equation, a typical master equation describing the dissipative quantum dynamics, is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form, known as the Kraus representation. Following a few simple examples, the general applicability of the method is clarified.

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciLindblad equationFOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaThe so-called Lindblad equation a typical master equation describing the dissipative quantum dynamics is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form known as the Kraus representation. Following a few simple examples the general applicability of the method is clarified.Open quantum systemQuantum processMaster equationDissipative systemQuantum operationMethod of quantum characteristicsQuantum Physics (quant-ph)Quantum statistical mechanicsMathematical physics
researchProduct

A Noncommutative Approach to Ordinary Differential Equations

2005

We adapt ideas coming from Quantum Mechanics to develop a non-commutative strategy for the analysis of some systems of ordinary differential equations. We show that the solution of such a system can be described by an unbounded, self-adjoint and densely defined operator H which we call, in analogy with Quantum Mechanics, the Hamiltonian of the system. We discuss the role of H in the analysis of the integrals of motion of the system. Finally, we apply this approach to several examples.

Pure mathematicsPhysics and Astronomy (miscellaneous)General MathematicsIntegrating factorExamples of differential equationsStochastic partial differential equationMethod of quantum characteristicsQuantum evolutionQuantum statistical mechanicsC0-semigroupDifferential algebraic equationSettore MAT/07 - Fisica MatematicaOrdinary differential equationSeparable partial differential equationMathematicsInternational Journal of Theoretical Physics
researchProduct

The relaxation-time limit in the quantum hydrodynamic equations for semiconductors

2006

Abstract The relaxation-time limit from the quantum hydrodynamic model to the quantum drift–diffusion equations in R 3 is shown for solutions which are small perturbations of the steady state. The quantum hydrodynamic equations consist of the isentropic Euler equations for the particle density and current density including the quantum Bohm potential and a momentum relaxation term. The momentum equation is highly nonlinear and contains a dispersive term with third-order derivatives. The equations are self-consistently coupled to the Poisson equation for the electrostatic potential. The relaxation-time limit is performed both in the stationary and the transient model. The main assumptions are…

PhysicsIndependent equationApplied MathematicsGlobal relaxation-time limitQuantum hydrodynamic equationsEuler equationsMomentumNonlinear systemsymbols.namesakeClassical mechanicsThird-order derivativesMaster equationQuantum drift–diffusion equationssymbolsMethod of quantum characteristicsPoisson's equationQuantum dissipationAnalysisJournal of Differential Equations
researchProduct